A Short Introduction To Naproche v0.1

Daniel Kuehlwein

July 8, 2008

1 Introduction

This document gives a quick overview of Naproche as of June 30th 2008. We
define the input language, and how Naproche deals with the different constructs.
Then, we explain the output and feedback system of Naproche. After the theory,
we take a closer look at an example.

Please keep in mind that this is a work in progress, and that this document
only explains what has already been implemented. For more information visit:

http://www.math.uni-bonn.de/people/naproche/

1.1 General Outline Of Naproche

Naproche - NAtural language PRoof CHEcker - aims at narrowing the gap be-
tween natural language mathematics and automated theorem provers. Using
computer linguistic and mathematical means, we want to translate natural lan-
guage mathematical texts into a format which is readable for automated theorem
provers (ATP). Combining Texmacs, a Latex WYSIWYG editor, Naproche and
an ATP gives a program which is able to check natural language mathematical
texts for correctness.

2 Input, Implementation And Output

This sections first introduces two of the formats used in current Naproche. We
then define the part of the english language which is currently allowed as input.
After that, we explain how the input is handled by Naproche, and, finally, we
talk about the output Naproche produces, and how to understand and use it.

2.1 Formats

We explain two of the formats used in Naproche in more detail. Please note
that there are more formats involved in Naproche, namely PRSs and DOBSODs.
These are, however, beyond the scope of this article.

2.1.1 The PROLOG Format

While Naproche aims at being able to process natural language mathematics,
we are not quite there yet. At the moment, every input has to be written di-
rectly in the sourcecode in a format we call, as the programming laguage we use,

PROLOG. Sentences are prolog lists, and mathematical symbols are written in
their unicode representation. We give a few examples of natural language math-
ematic expressions and their corresponding PROLOG input. These examples
do not provide a complete translation of natural language into PROLOG, but
hopefully give you the general idea.

Natural language Assume, that =3y such that y € 0.
PROLOG [assume, that,math(”\uOOac \u2203 y
(v \u2208 \u2205)”)]

Natural language Define Trans(z) if, and only if
Yu,v((u € v) A (v € x)) — (u € x).

PROLOG [define, math(” Trans(x)”),iff,math(”\u2200 u \u2200 v
(((u \u2208 v) \u2227 (v \u2208 x))
\u2192 (u \u2208 x))”)]

Natural language Then 3z, € 0.
PROLOG [then, math(”\u2203 x x \u2208 \u2205")]

2.1.2 The TPTP Format

Originally, each automated theorem prover had its own input format. In the
past few years, with the rise of CASC, and, with it, the Thousand Problems for
Theorem Provers, the TPTP format emerged. The TPTP format is a way of
writing first order logic which is understood by almost every first order ATP. In
Naproche, we translate natural language to ATP queries. We write the queries
in TPTP, as this allowes us to try different ATP systems. Therefore, a basic
understanding of the TPTP format is helpful. Again, we will only scratch the
surface.If you want more information about TPTP, take a look at www.tptp.org
A first order formula in TPTP has the following Syntax:

fof(name,role, formula).

name is the name of the formula, role states whether the formula is an axiom
or a conjecture and formula is the formula we are talking about. In section 3
we will talk about the name and the role in more detail.

Our examples from before look as follows in TPTP

Natural language Assume, that =3y such that y € 0.

PROLOG [assume, that,math(”\u00ac \u2203 y
(v \u2208 \u2205)”)]
TPTP fof(1, axiom, (?[Vy]:(in(Vy,vemptyset)))).

Natural language Define Trans(z) if, and only if
Vu,v((w € v) A (v € x)) — (u € x).
PROLOG [define, math(” Trans(x)”),iff,math(”\u2200 u \u2200 v
(((u\u2208 v) \u2227 (v \u2208 x))
\u2192 (u \u2208 x))")]
TPTP fof(1, axiom, ![Vx]:((trans(Vx))<=> ([Vu]:(/[Vv]:
(((in(Vu,Vv)) & (in(Vv,Vx)))=> (in(Vu,Vx))))))).
Natural language Then 3z, € 0.

PROLOG [then, math(”\u2203 x x \u2208 \u2205")]
TPTP fof(1, conjecture, ?[Vx]:(in(Vx,vemptyset))).

2.2 The Input

Automatic understanding of natural language is the topic of computer linguis-
tics. If computers could understand natural language, translations from one
language into another would not be a problem anymore. If you ever used any
automatic translation program you probably noticed that we are not quite there
yet. One way around this problem is to simply restrict the allowed input.
Naproche also facilitates this approach.

In the following, statement stand for a mathematical formula. We now define
the allowed input constructs:

2.2.1 Statements

A statement sentence consists of a, possibly empty, statement_prefix and the
actual statement. So we have the structure:

[statement_pre fix, statement]

Here, statement_prefix can be any of the following: [then],[hence],[recall, that],
[but], [in, particular],[observe, that],[together, we, have],[so].

e.g. [then, math(”\u2203 x x \u2208 \u2205”)] is a valid statement.
2.2.2 Negation

A negation is quite similar to a normal statement:
[not, statement]

e.g. [not, math(“x=x")] is a valid negation.

2.2.3 Definitions

A definition has two possible structures:
[define,left_statement,if f, right_statement]

and
[define,left_statement,if, and, only,if, right_statement]

e.g. [define, math(” Trans(x)”),iff,math(”\u2200 u \u2200 v (((u \u2208 v)
\u2227 (v \u2208 x)) \u2192 (u \u2208 x))”)] is a valid definition.

2.2.4 Assumptions

Assumptions are a common mathematical construction. However, there is one
problem. In natural language texts, they often end impicitly. In order to make
it easier for us, we introduce a trigger to mark the end of an assumption. There-
fore, assumptions usually come in pairs. (There is one exception, which involved
a [qed] sentence. See structural markers for more details).

To open an assumption we use the structure:

[assumption_trigger, statement]

where assumption_trigger is any of the following: [assume, that], [consider], [let],
[assume, for, a, contradiction, that].
To close an assumption we use:

[thus, statement]

The assumption is valid for every sentence between the [assumption_trigger]
and the [thus] sentence.

e.g. [assume, that, math(”\uOOac Trans(\u2205)”)],[then, math(”\u2203 x
x \u2208 \u2205”)],[contradiction],[thus, math(” Trans(\u2205)”)].
2.2.5 Implication

Implications are triggered by implies:
[statement, implies, statement]

e.g. [math(“x=y”), implies, math(“y=x")].

2.2.6 For all

Forall statements using natural language quantification have the structure:
[for, all, statement list, (,), statement]

Here statement_list is a list of statement. We expect a list here to make
quantification over several variable at once possible.

e.g. [for, all, math(“x”), (,) math(“x=x")].
2.2.7 Contradiction

“Proof by Contradiction” is a another common construct in mathematical proofs.
A contradiction is indicated by:

[contradiction]

2.2.8 Structural markers

Mathematical texts also use markers like Theorem or Lemma to structure them.
In Naproche we allow the following constructions:

[theorem], goal, [proof], body, [ged]]

[lemmal), goal, [proof], body, [ged]]

Here goal and body are list of statements. Note that [ged/ closes any assumptions
which are still open in the end of the proof.

e.g. [[theorem],[math(“x=x")],[proof],[math(“x=x")],[qed]] is a valid theo-
rem.

2.3 The Implementation

In section 2.2, we specified the input of Naproche. In this section, we explain
what is happening internally, when parsing a sentence.

When processing a text, Naproche keeps a list of Premises. At any given mo-
ment, Premises contains all statements which we consider true at that moment.
Naproche takes care of keeping the Premises updated, and of checking state-
ments using an ATP. Note that at the start of Naproche, Premises is an empty
list. In the following, we describe the Naproche algorithm for each sentence

type.

2.3.1 Statements

Statements are the most basic sentences. Upon parsing a statement sentence,
Naproche tries to prove the statement from the current Premises.

To be more precise, Naproche first translates the Premises and the state-
ment into TPTP and writes the result in Output/Inputld, where Id is a unique
string, corresponding to the sentence. It then calls SystemsOnTPTP, a program
written by Geoff Sutcliffe, to start the ATP. The result of the ATP is saved in
Output/Outputld. Naproche then creates a new line in final_output containing
the Id, the formula to be proved in TPTP and the result. (For more details see
section 2.4 and 3). Finally the statement is added to the list of Premises.

e.g. Assume that Premises is empty. The sentence

[hence, math("x=x)"]

first creates a new input file, say Output/input0, which contains

fof (1, conjecture, =(vx,vx)).

then it runs the ATP, and stores the result in an output file, Qutput/output0:

Output/inputO Theorem 0.0 0.0 0 1 12
Output/inputO Refutation 0.0 0.0

as the ATP says Theorem, we add the following line to final_output:

0 [fof(1, conjecture, =(vx,vx))] Theorem

2.3.2 Negation

Recall, that a negation has the form [not, statement]. Naproche tries to prove
the negated statement from the Premises.. Then it adds the negated statement
to Premises.

e.g.
[not, math("x=y")]

After trying to prove -z = y, Naproche adds —(z = y) to the Premises.

2.3.3 Definitions

Definitions are treated as equivalences. A definition sentence,
[define,left_statement,if f,right_statement], adds
left_statement <« right_statement to the Premises.

e.g.

[define, math("Trans(x)"),iff,math("\u2200 u \u2200 v
(((u \u2208 v) \u2227 (v \u2208 x)) \u2192 (u \u2208 x))")1,

Adds Trans(z) < Yu,v((u € v) A (v €) — (u € x) to the Premises.

2.3.4 Assumptions

Upon opening an assumption, e.g. [let, statement], statement is added to the
Premises. When we encounter [thus] or [ged], the Premises, which were valid
before opening the assumption, are restored. Then, for each statement between
the opening and the closing of the assumption, we add V[free variables in the
assumption], assumption_statement — statement to the Premises. If [thus]
was used to close the assumption, Naproche then tries to prove the statement
following [thus] from the updated Premises.

There is one special case, namely, when a contradiction was proved while the
assumption was open. In that case, every statement between the opening and
the closing is discarded. We restore the old Premises and add —assumption_statement.

e.g. Assume that Premises is empty. Consider the following discourse.

[[let, math("x=y")],
[hence, math("y=x"],
[thus, math("\u2200 x \u2200 y ((x = y) \u2192 (y = x))")1]

Parsing the sentence [let, math("x=y")] adds x =y to Premises. [hence,
math ("y=x"] makes Naproche try and prove y = x from the Premises. [thus,
math("\u2200 x \u2200 y ((x = y) \u2192 (y = x))")] does two things.
First, it closes the assumption and resets the Premises to the empty list. Then,
Naproche calculates the free variables of the assumption statement, = and y,
and adds Vz,y(x = y — y = x) to the Premises. Second, it tries to prove
the statement following [thus] from the Premises. This, of course, succeeds as
they are the same.

2.3.5 Implication

When encountering an implication [statementA, implies, statementB],

first, statementA is added to the Premises. Then, Naproche tries to prove
statementB from the updated Premises. Afterwards, we restore the old Premises,
and add statementA — statementB.

e.g.
[math("x=y"), implies, math("y=x")]

Naproche first tries to prove y = x from x = y, and then adds x =y — y ==z
to Premises.

2.3.6 For all

When parsing a natural language quantification

[for, all, statement_list, (,), statement], Naproche tries to prove
Vstatement_list, statement from the Premises. Then
Vstatement_list, statement is added.

e.g.
[for, all, math("x"), (,), math("x=x")]

We first try to prove Va,x = x and then add Va,x = x to Premises.

2.3.7 Contradiction

The sentence [contradiction] makes Naproche try, and prove $false. It then
adds $false to the Premises. For the use of [contradiction] see 2.3.4.

2.3.8 Structural markers

Both [[theorem], goal, [proof], body, [ged]] and

[lemmal, goal, [proof], body, [ged]] are treated the same. Therefore, we only con-
sider the [theorem] case. When Naproche parses [theorem], it creates a tem-
porary variable and saves all the statements in goal in it. It then parses body.
Afterwards, we try to prove goal from all the Premises, which were availabe
before [theorem], and the statements from body. Finally, we discard body and
add goal to the Premises.

e.g. Assume the Premises is empty.

[[theorem],
[math("y=y"],
[proof],
[math("x=x")],
[qed]].

We first try to prove the body: = = x, and afterwards add =z = x to the
Premises. Then, the goal,y = y, has to be proved from Premises. After parsing
these sentences, Premises contains only y = y.

2.4 The Output

Naproche provides you with several means to keep track of what it actually does
when parsing a mathematical text. After running Naproche, you will find a file
named final_output in your Naproche folder, as well as lots of new files, named
inputID and outputID, in your Qutput folder. Here, Id is either a number, or a
string followed by a number.

2.4.1 final output

final_output is basically a table with three columns. Each row corresponds to
one query to the ATP. The first column notes the Id of the sentence which is
processed. The second column has the statement which Naproche tries to prove,
in TPTP format. And the third column holds the result of the query.

e.g. The input, which is a proof for Ord(),

[assume, that,math("\uOOac \u2203 y (y \u2208 \u2205)")],
[assume, that, for,all,math("x"), (,)

,math("\u0Oac (x \u2208 x)")1],

[define, math("Trans(x)"),iff,math("\u2200 u \u2200 v (

((u \u2208 v) \u2227 (v \u2208 x)) \u2192 (u \u2208 x))")],
[define,math("0rd(x)"),iff,math("Trans(x) \u2227 (\u2200 y (
(y \u2208 x) \u2192 Trans(y)))"™],

[theorem],
[math ("0rd (\u2205)")1,
[proof],

[consider, math("u \u2208 v"), and ,math("v \u2208 \u2205")],
[assume, that, math("\uOOac Trans(\u2205)")],

[then, math("\u2203 x x \u2208 \u2205")],

[contradiction],

[thus, math("Trans(\u2205)")],

[assume, that, math("\uOOac Trans(v)")],
[then, math("\u2203 x x \u2208 \u2205")],
[contradiction],

[thus, math("Trans(v)")],

[thus, math("Ord(\u2205)")],

[ged]

creates the following final_result:

9 [fof (1, conjecture, ?[Vx]:(in(Vx,vemptyset)))] Theorem
10 [fof (1, conjecture, $false)] Theorem

11 [fof (1, conjecture, trans(vemptyset))] Theorem

13 [fof (1, conjecture, 7[Vx]:(in(Vx,vemptyset)))] Theorem
14 [fof (1, conjecture, $false)] Theorem

15 [fof (1, conjecture, trans(vv))] Theorem

theorem_4 [fof (1, conjecture, ord(vemptyset))] Theorem

Here, each call was successful, as can be seen by the word Theorem in the third
colum. If you compare the calls with the input and the description in 2.3, you
can get a good idea of how Naproche works.

2.4.2 The Output folder

final_output already gives you a good overview of what is happening. The Output
folders contains even more information. For each ATP query, two files get
created in Output, Inputld and Outputld. Here, Id is the unique identification
number of the input sentence.

e.g. When you take a look at the example in the last section, you will find
that the first row in final_result is

9 [fof (1, conjecture, 7[Vx]:(in(Vx,vemptyset)))] Theorem

The Output folders contains the corresponding input and output files: input9
and output9. The input file contains:

fof (1, axiom, “(?7[Vy]:(in(Vy,vemptyset)))).

fof (2, axiom, ![Vx]:("(in(Vx,Vx)))).

fof (3, axiom, ![Vx]:((trans(Vx))<=>(![Vu]l:(!'[Vv]:
((GEn(Vu, V))& GEn (W, Vx))) =>(in(Vu,Vx))))))) .

fof (4, axiom, ![Vx]:((ord(Vx))<=>((trans(Vx))&(![Vy]:
((An(Vy,Vx))=>(trans(Vy))))))).

fof (5, axiom, in(vv,vemptyset)).

fof (6, axiom, in(vu,vv)).

fof (7, axiom, ~(trans(vemptyset))).

fof (1, conjecture, ?7[Vx]:(in(Vx,vemptyset))).

Our query is: Try to proof conjecture 1 using only the axioms 1-7. Have a look
at the input, if you are not sure where these axioms stem from.
The output file contains:

Output/input9 Theorem 0.0 0.0 0 1 12
Output/input9 Refutation 0.0 0.0

Which tells us, that this is a theorem, meaning that the ATP could prove
conjecture 1 from the axiom 1-7.

3 An Example

This section takes a closer look at an example. First, we explain how to use
Naproche in its current form. Then, we give the example in normal english,
followed by the example in PROLOG format. We then present final_output.
Finally, we go through the example, one sentence at a time, looking at the valid
Premises at any given point, and compare the theory with the actual results.

3.1 Running Naproche

First make sure that you have TPTP World and SWI Prolog installed. Have a
look at the README file in the Naproche folder for installation instructions.
After that, open the terminal, go to your main Naproche directory, and start
prolog using the 'plI’ command. After that, consult load.pl, as well as, runner.pl
via fload]. and [runner]. You should get the following output:

Welcome to SWI-Prolog (Multi-threaded, 32 bits, Version 5.6.55)
Copyright (c) 1990-2008 University of Amsterdam.

SWI-Prolog comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it
under certain conditions.

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?7- apropos(Word).

?7- [load].
% library(pldoc) compiled into pldoc 0.14 sec, 407,876 bytes

% library(plunit) compiled into plunit 0.02 sec, 78,548 bytes
% library(sgml) compiled into sgml 0.00 sec, 19,840 bytes
% library(porter_stem) compiled into porter_stem 0.00 sec,

2,288 bytes
% library(occurs) compiled into occurs 0.01 sec,
6,844 bytes

% library(apply_macros) compiled into apply_macros 0.01 sec,
16,268 bytes

% mnaproche(gulp4swi) compiled into gulp4 0.01 sec,

19,752 bytes

% mnaproche(utils) compiled into utils 0.00 sec, 9,248 bytes
% mnaproche(production_utils) compiled 0.01 sec, 5,820 bytes
% mnaproche(development_utils) compiled into
development_utlis 0.00 sec, 4,760 bytes

% mnaproche(xml) compiled into xml 0.01 sec, 8,660 bytes

% naproche(texmacs) compiled into texmacs 0.00 sec, 6,664 bytes
% mnaproche(prs) compiled into prs 0.02 sec, 50,044 bytes

% naproche(translation_tptp) compiled into
translation_tptp 0.01 sec, 7,880 bytes

% mnaproche(prs_export) compiled into prs_export

0.01 sec, 23,500 bytes

% premises compiled into premises 0.02 sec, 22,296 bytes

% fof_check compiled into fof_check 0.01 sec, 16,608 bytes
% mnaproche(checker) compiled into check_prs 0.04 sec,
54,884 bytes

% naproche(expr_grammar) compiled into expr_grammar

0.01 sec, 16,668 bytes

% mnaproche(grammar) compiled 0.02 sec, 23,536 bytes

% naproche(math_lexicon) compiled into math_lexicon

0.00 sec, 10,120 bytes

% mnaproche(lexicon) compiled into lexicon 0.00 sec, 5,096 bytes
% test/production_utils.plt compiled 0.00 sec, 10,332 bytes
% test/development_utils.plt compiled 0.01 sec, 1,656 bytes
% test/xml.plt compiled 0.00 sec, 6,364 bytes

% test/prs/prs.plt compiled 0.01 sec, 30,416 bytes

% test/prs/prs_export.plt compiled 0.00 sec, 11,112 bytes

% test/logic/translation_tptp.plt compiled 0.01 sec,

11,996 bytes

% test/logic/checker.plt compiled 0.03 sec, 47,908 bytes

% test/logic/premises.plt compiled 0.04 sec, 58,140 bytes

% test/logic/fof_check.plt compiled 0.01 sec, 11,768 bytes
% test/expr_grammar.plt compiled 0.02 sec, 37,636 bytes

% Started Prolog Documentation server at port 8000

% You may access the server at http://localhost:8000/

% load compiled 0.78 sec, 1,778,512 bytes

true.

?- [runner].

Warning: /home/rekzah/Programming/Naproche/naproche/
runner.pl:350:

10

Redefined static procedure logger/1
% runner compiled 0.03 sec, 27,844 bytes
true.

If you want, you can type run_tests. to check whether everything is working,
but for now we assume that that is the case. Next, we start our example by
typing try_check(ord).. You should get the following output:

7- try_check(ord).
true.

Note, that between typing the command and getting the result (true) up
to 5 seconds will pass. Most of this time is needed for the actual checking of
the proof. We hope that we can reduce it by using other checkers, and more
efficient coding. You can use the ¢ry_nocheck(ord). command to see how long it
takes without checking, and the try(ord,X). command if you want to just build
the PRS.

3.2 The Ordinals Example In Normal English

The following text originates from set theory, a mathematical discipline. Set
theory concerns itself with the very basics of mathematics. Together with logic,
it can be seen at the foundation of nowadays mathematics. The text proves that
there is a difference between classes and sets. In particular, that the class of all
ordinals is not a set. The only assumptions we use are the existence of an emtpy
set, and the foundation axiom. To make the natural language version easier to
compare with the PROLOG version, each sentence is written in a separate line.

Assume, that =3y such that y € 0.

Assume, that for all z holds —x € x.

Define Trans(z) if, and only if Vu, v((u € v) A (v € x)) — (u €).
Define Ord(z) if, and only if Trans(z) A (Vy(y €) — Trans(y).

Theorem.

Ord(0).

Proof.

Consider u € v and v € (.
Assume that —=T'rans(0).
Then 3z, z € 0.
Contradiction.

Thus T'rans(0).

Assume that =Trans(v).
Then 3z,z € 0.
Contradiction.

Thus Trans(v).

Thus Ord(0).

11

Qed.

Theorem.
For all z,y © € y A Ord(y) implies Ord(x).

Proof.

Consider « € y and Ord(y).
Then Vz((z € y) — Trans(z)).
Hence Trans(z).

Assume that u € x.

Then u € y.

Hence T'rans(u).

Thus Ord(z).

Qed.

Theorem.
For all z,# (Vu(u €) — Ord(u)).

Proof.
Assume for a contradiction that there is an x such that Vu((u €) — Ord(u)).

Lemma.

Ord(x)

Proof.

Let u e vand v € z.
Then Ord(v).
Hence Ord(u).
So, u € x.

Thus Trans(x).
Let v € x.
Then Ord(v).
So Trans(v).
Thus Ord(z).

Qed.

Then z € x.
Contradiction.

Qed.

3.3 The Ordinals Example In Naproche

As our plugin for Texmacs is not working at the moment, we have to hardcode
the example in our source files. In the Naproche folder, you find a file called
runner.pl. This file contains tests and examples. The translation of the example
into our current input format, PROLOG, can be found between the lines 120
and 197. We also present it here:

p(ord,Sentence) :-
Sentence = [

12

[assume, that,math("\uOOac \u2203 y (y \u2208 \u2205)")],
[assume, that, for,all,math("x"), (,)

,math("\u0Oac (x \u2208 x)")],
[define, math("Trans(x)"),iff,math("\u2200 u \u2200 v (

((u \u2208 v) \u2227 (v \u2208 x)) \u2192 (u \u2208 x))")],
[define,math("0rd(x)"),iff,math("Trans(x) \u2227 (\u2200 y (
(y \u2208 x) \u2192 Trans(y)))"™],

[theorem],

[math("0rd (\u2205)")1,

[proof],

[consider, math("u \u2208 v"), and ,math("v \u2208 \u2205")1],

[assume, that, math("\uOOac Trans(\u2205)")],
[then, math("\u2203 x x \u2208 \u2205")],
[contradiction],

[thus, math("Trans(\u2205)")],

[assume, that, math("\uOOac Trans(v)")],
[then, math("\u2203 x x \u2208 \u2205")],
[contradiction],

[thus, math("Trans(v)")],

[thus, math("Ord(\u2205)")],
[qed],

[theorem],

[for ,all , math("x"), (,), for, all, math("y"), (,),

math("(x \u2208 y \u2227 0Ord(y))"), implies, math("Ord(x)")],
[proof],

[consider, math("x \u2208 y"), and, math("Ord(y)")]1,
[then, math("\u2200 x ((x \u2208 y) \u2192 Trans(x))")],
[hence, math("Trans(x)")],

[assume, that, math("u \u2208 x")],

[hence, math("u \u2208 y")],

[then, math("Trans(u)")],

[thus, math("0Ord(x)")],

[qed],

[theorem],

[for, all, math("x"), (,) , math("\uOOac (\u2200 u (
(u \u2208 x) \u2194 Ord(u)) d)"1I,

[proof],

[assume, for, a, contradiction, that, there, is, an, math("x"),
such, that, math("\u2200 u (
(u \u2208 x) \u2194 0rd(w))1,

13

[lemma] ,

[math("0rd(x)")1,

[proof],

[let, math("u \u2208 v"), and, math("v \u2208 x")],
[then, math("0rd(v)")],
[hence, math("Ord(u)")],
[so, math("u \u2208 x")1],
[thus, math("Trans(x)")],
[let, math("v \u2208 x")],
[then, math("0rd(v)")],
[so, math("Trans(v)")],
[thus, math("0Ord(x)")],
[qed],

[then, math("x \u2208 x")],
[contradiction],

[qed]

1.

The programming language we use is prolog. Our input is a list of lists,
where every ’internal’ list represents a sentence in the normal proof. We use
Unicode to encode mathematical symbols such as V,3 etc. That aside, you will
find that our input is almost the same as the natural english proof, which we
presented in the last section.

3.4 final output after running Naproche

After running Naproche on the ordinals example final_output should look as
follows:

9 [fof (1, conjecture, ?7[Vx]:(in(Vx,vemptyset)))] Theorem

10 [fof (1, conjecture, $false)] Theorem

11 [fof (1, conjecture, trans(vemptyset))] Theorem

13 [fof (1, conjecture, 7[Vx]:(in(Vx,vemptyset)))] Theorem

14 [fof (1, conjecture, $false)] Theorem

15 [fof (1, conjecture, trans(vv))] Theorem

theorem_4 [fof (1, conjecture, ord(vemptyset))] Theorem

22 [fof(1, conjecture, ![Vx]:
((in(Vx,vy))=>(trans(Vx))))] Theorem

23 [fof (1, conjecture, trans(vx))] Theorem

25 [fof (1, conjecture, in(vu,vy))] Theorem

26 [fof (1, conjecture, trans(vu))] Theorem

27 [fof (1, conjecture, ord(vx))] Theorem

theorem_18 [fof (1, conjecture, ![Vx]:(![Vy]l:(![Vy,Vx]:
(((in(Vx,Vy))&(ord(Vy)))=>(ord(Vx))))))] Theorem

37 [fof (1, conjecture, ord(vv))] Theorem

38 [fof (1, conjecture, ord(vu))] Theorem

39 [fof (1, conjecture, in(vu,vx))] Theorem

14

40 [fof (1, conjecture, trans(vx))] Theorem

42 [fof (1, conjecture, ord(vv))] Theorem

43 [fof (1, conjecture, trans(vv))] Theorem
lemma_33 [fof (1, conjecture, ord(vx))] Theorem
46 [fof (1, conjecture, in(vx,vx))] Theorem

a7 [fof (1, conjecture, $false)] Theorem
theorem_29 [fof (1, conjecture,

VIVvx] : (CCV [Vud : ((En(Vu,Vx)) <=>(ord(Vu))))))1] Theorem

Each line corresponds to one call of the ATP, in our case OTTER. In this case,
we could prove everything, as can be seen by the word Theorem at the end of
each line.

3.5 Understanding Naproche

Now, we look at one sentence at a time. We explain what is going on, define
the Premises, and compare the theory with the output we get in final_output
and the Output folder.

3.5.1 Preliminaries

The first four lines of our example contain basic assumptions and definitions,
under which we are working.

[assume, that,math("\uOOac \u2203 y (y \u2208 \u2205)")],
[assume, that, for,all,math("x"), (,)

,math("\u0Oac (x \u2208 x)")1],
[define, math("Trans(x)"),iff,math("\u2200 u \u2200 v (

((u \u2208 v) \u2227 (v \u2208 x)) \u2192 (u \u2208 x))")1,
[define,math("0rd(x)"),iff,math("Trans(x) \u2227 (\u2200 y (
(y \u2208 x) \u2192 Trans(y)))")I,

Each opening of an assumptions adds a premise, and also each definition
adds a premise. (See 2.3 for more details.) As there are only assumptions
and definitions, there is nothing to prove. We list the active Premises after
processing these four lines and proceed:

active Premises

ﬂﬂy,y el

Ve, - (z € x)

Trans(z) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)

3.5.2 The First Theorem: Ord(()

The first thing we prove is Ord(0):

[theorem] ,

[math("0rd (\u2205)")1,

[proof],

[consider, math("u \u2208 v"), and ,math("v \u2208 \u2205")],

15

[assume, that, math("\uOOac Trans(\u2205)")],
[then, math("\u2203 x x \u2208 \u2205")],
[contradiction],

[thus, math("Trans(\u2205)")],

[assume, that, math("\uOOac Trans(v)")],
[then, math("\u2203 x x \u2208 \u2205")],
[contradiction],

[thus, math("Trans(v)")],

[thus, math("0Ord(\u2205)")],

[qed],

Upon parsing the sentence [theorem] , Naproche looks for the keywords
[proof] and [ged] . All sentences between [theorem] and [proof]
become the goal, all sentences between [proof] and [ged] are the body.
Naproche tries to prove the goal from the body.

In this case, goal only contains one statement: Ord(()). This is parsed and
stored for later. Naproche proceeds by checking the body.

The first two statements of the body are two more assumptions. After parsing
those, Premises contains:

Premises

—Jy,y € 0

Ve, (z € x)

Trans(z) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)
(uewv)A(vel)

—Trans()

The next sentence is [then, math("\u2203 x x \u2208 \u2205")] . This
is the first statement. Time for some real work. Recall, that a statement means
that we have to prove it from the current Premises. If you have a look at
final_output, you find that the first line of that file corresponds to our sentence:

Natural language
Then 3z, z € 0

PROLOG
[then, math("\u2203 x x \u2208 \u2205")]

final_output
9 [fof(1, conjecture, ?[Vx]:(in(Vx,vemptyset)))] Theorem

Furthermore, the file Output/input9 gives you a way of checking which
Premises Naproche considers active at that moment. Again, the input cor-
responds to the Premises listed above.

fof (1, axiom, ~(?7[Vy]:(in(Vy,vemptyset)))).
fof (2, axiom, !'[Vx]:("(in(Vx,Vx)))).

16

fof (3, axiom, ![Vx]:((trans(Vx))<=>(![Vu]:(![Vv]:
(((in(Vu,Vv))&(in(Vv,Vx)))=>({1n(Vu,Vx))))))).

fof (4, axiom, ![Vx]:((ord(Vx))<=>((trans(Vx))&(![Vy]:
(Gin(Vy,Vx))=>(trans(Vy))))))).

fof (5, axiom, in(vv,vemptyset)).

fof (6, axiom, in(vu,vv)).

fof (7, axiom, ~(trans(vemptyset))).

fof (1, conjecture, 7[Vx]:(in(Vx,vemptyset))).

For the sake of completeness, we also list Output/output9:

Output/input9 Theorem 0.0 0.1 0 1 12
Output/input9 Refutation 0.0 0.1

This gives the same result as final_output: This statement can be proven
from the Premises, and therefore is a Theorem.

After checking this sentence, the statement is added to the Premises. There-
fore, after parsing [then, math("\u2203 x x \u2208 \u2205")1, our Premises
are:

Premises

-Jy,y e

Ve, -(x € z)

Trans(xz) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)
(uev)A(vel)

—Trans(()

Jx,z €0

Next comes [contradiction] . First, Naproche tries to prove $false from
the Premises. As —3y,y € () and Iz, z € () are both available Premises, it should
be no surprise that this check succeeds. final_outputs second line corresponds
with this check:

10 [fof (1, conjecture, $false)] Theorem
Output /input10 contains our Premises with the conjecture $false.

fof (1, axiom, “(7[Vy]:(in(Vy,vemptyset)))).

fof (2, axiom, !'[Vx]:("(in(Vx,Vx)))).

fof (3, axiom, ![Vx]:((trans(Vx))<=>(![Vu]l:(!'[Vv]:
((EAn(WVu,Vv))&(in(Vv,Vx)))=>({1n(Vu,Vx))))))).

fof (4, axiom, ![Vx]:((ord(Vx))<=>((trans(Vx))&(![Vy]:
((in(Vy,Vx))=>(trans(Vy))))))).

fof (5, axiom, in(vv,vemptyset)).

fof (6, axiom, in(vu,vv)).

fof (7, axiom, ~(trans(vemptyset))).

fof (8, axiom, ?7[Vx]:(in(Vx,vemptyset))).

fof (1, conjecture, $false).

and Output/output10 says Theorem, as expected:

17

Output/input10 Theorem 0.0 0.0 0 1 12
Output/input10 Refutation 0.0 0.0

Finally, $false is added to the Premises. Premises now contains:

Premises

-Jy,y €

Vo, - (z € x)

Trans(z) < Yu,v((u € v) A (v € x)) — (u € T)
Ord(x) < Trans(z) A (Vy(y €) — Trans(y)
(uewv)A(vel)

—Trans(D)

Az, z el

$false

The next sentence is [thus, math("Trans(\u2205)")] . Recall, that thus
closes an assumption. As we have a contradiction, all statements made in the
scope of the assumptions are discarded, and the negated assumptions statement
is added to the Premises. After this, the active Premises are:

Premises

-Jy,yed

Ve, - (z € x)

Trans(z) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)
(uewv)A(vel)

——Trans(()

From these updated Premises, we now try to prove the statement
[math("Trans (\u2205)")] . Because =—Trans() is an active premise, this
also succeeds.

The third line in final_output corresponds to this query:

11 [fof (1, conjecture, trans(vemptyset))] Theorem

Output/inputl! contains the exact query, the axioms corresponding to our
Premises, the conjecture to the statement.

fof (1, axiom, ~(?[Vy]:(in(Vy,vemptyset)))).

fof (2, axiom, ![Vx]:("(in(Vx,Vx)))).

fof (3, axiom, ![Vx]:((trans(Vx))<=>(![Vu]l:(![Vv]:
(((An(Vu,Vv))&(En(Vv,Vx)))=>(in(Vu,Vx))))))).

fof (4, axiom, ![Vx]:((ord(Vx))<=>((trans(Vx))&(![Vy]:
((in(Vy,Vx))=>(trans(Vy))))))).

fof (5, axiom, in(vv,vemptyset)).

fof (6, axiom, in(vu,vv)).

fof (7, axiom, ~("(trans(vemptyset)))).

fof (1, conjecture, trans(vemptyset)).

Finally, the statement is added to Premises:

18

Premises

-Jy,y €

Vi, -(x € z)

Trans(z) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)
(uev)A(ve)

—=Trans(0)

Trans(()

The next four lines of the body of the theorem are dealt with equivalently.
We present the active Premises after parsing them:

Premises

—-Jy,y€d

YV, -(x € x)

Trans(xz) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)
(uev)A(vel)

—=Trans(()

Trans(0)

——Trans(v)

Trans(v)

We now close another assumption: [thus, math("0rd(\u2205)")] . This
time, however, we don’t have a contradiction. Therefore, Naproche does the
following. First, it determins the free variables of the assumption statement: u
and v. For each statement in the scope of the assumption, namely ——Trans((),
Trans(0), ——Trans(v) and Trans(v), Naproche adds Yu,v assumption —
statement to Premises. The active Premises are then:

Premises

-Jy,y €l
Vo, (z € x)
Trans(z) < Yu,v((u € v) A (v € x)) — (u € x)
Ord(z) < Trans(z) A (Vy(y € x) — Trans(y)
Vu,v((u € v) A (v € 0)) — =—Trans(d)
Vu,v((u € v) A (v € D)) — Trans(D)
Vu,v((u € v) A (v € D)) — ——=Trans(v)
Yu,v((u € v) A (v € D))
Normally, Naproche would now try and prove the statement
[thus, math("0rd(\u2205)")] . But in this case, a special feature comes into
play. If the last statement of the proof is the same as the goal of theorem, we
skip proving it, and, instead, try to prove the theorem. This is reflected in
final_output and the Qutput folder.

3.5.3 The Rest Of The Text

We hope that, after giving you a detailed step by step approach in the last
section, you can easily understand the remainder of the input text. Remember
to use final_output and Output to check the valid Premises and the ATP queries.

19

If you do have any questions, or found a bug, please contact us. You find
the contact details, as well as news and updates to Naproche at

hitp : /Jwww.math.uni — bonn.de/people/naproche/

20

