
Internship Report

Mona Rahn

Mathematical Institute, University of Bonn
mona.rahn@uni-bonn.de

http://www.naproche.net

1 The Naproche Project

The Naproche (Natural Language Proof Checking) project is a joint initiative of
Peter Koepke and Bernhard Schröder. The aim is, firstly, to construct a system
which accepts a controlled subset of ordinary mathematical language and to
transform this language into formal statements. Secondly, we want to convert
the statements into first-order logic so that a automated theorem prover (ATP)
can check them.

2 An Overview over my Work

Figure 1 shows the architecture of the Naproche system. The boxes represent
the major modules. Next to the downward arrows, the output format of the
corresponding module is shown. The files mentioned explicitly in the boxes are
the ones I mainly worked with.

The procedure is the following: At first, the user gives the input, supported
by the file help.html. This is processed by input utils.pl into a Naproche readable
format so that a PRS can be created which is checked by checker.pl - my main
working field. During these steps, error and warning messages provide a feedback
to the user. If the input can be proven, the output is “Theorem”.

3 The First Steps

In the first week, I familiarized myself with Prolog and the concept of Proof
Representation Structures (PRS, see section 7.2).
At the beginning, I read the introduction of Blackburn and Bos into Representa-
tion Structures [1]; the exercises given in the two books helped me to get a better
grasp of the underlying principles. These books cover Discourse Representation
Structures (DRS), which is a technique computational linguists developed to
automatically extract the semantics of a natural language text. The PRS used
in Naproche are a modification of these structures.

In the first week I also studied Prolog, the programming language in which
Naproche is written. Since I had never programmed in a declarative programming
language before but only in imperative languages like C, Prolog appeared unusual

2 Mona Rahn

User Interface
www.naproche.net

help.html

Process Input

input_utils.pl

I f $ x = y $ t h e n $ y = x $.

Linguistics / Create PRS

fo_grammar.pl

[sen tence (1 , [i f , ma th ([x ,= ,y] , t hen , ma th ([y ,= ,x])])]

Logic / Check PRS

checker.pl
premises.pl

Output

prs_export.pl

PRS

x = y y = x= >

Errors and
Warnings

Theorem

Fig. 1. The architecture of the Naproche system.

Internship Report 3

to me at first because there are no commands like “while”; but after I had
written my first predicates in Prolog, I quickly got used to it. The website by
Blackburn and Bos, Learn Prolog Now1, was a really helpful (and entertaining)
introduction. In this period, I also learnt how to implement tests in Prolog, which
is an incredibly useful tool for finding errors. During my internship, I wrote tests
for every predicate I programmed and more than thirty for checker.pl alone.
Furthermore, I learnt how to write the documentation for my programs in the
pldoc style and how to use the Prolog command trace for debugging.

4 The Module “input utils.pl”

My first two programs written in Prolog were word and input math. Both are
part of the file input utils.pl and used by the predicate create naproche input,
which is responsible for processing the input into a form from which the PRS
can be built. The procedure is the following:
Naproche gets the input in the form of a single atom, e.g.

‘There is no y such that $y \in \emptyset$.’

Then the atom is converted into a list of characters from which sentences are
built. A sentence has an ID and is a list of words and mathematical input followed
by a terminal symbol. In our example, the output sentence is

[
sentence(1, [there, is, no, math([y]), such, that,

math([y, \u2208, \u2205])])
]

In order to build the sentence, my programs are used. word recursively de-
fines a word; similarly, input math processes mathematical input (enclosed by
$ signs). input math can also handle some LATEX commands beginning with a
backslash like \in and \emptyset in our example. For this feature, I wrote the
predicate latex lexicon which converts LATEX into Unicode. It can also parse
more complex LATEX commands like \sqrt{x} or \frac{\sqrt{x}}{y}. A list
of commands can be found on the Naproche website.

5 An Introduction into Error Messages

Syntactically the example given above is correct. For the case that the input
is not correct, I have written error messages as a feedback to the user. In in-
put utils.pl, examples are:

1 http://www.learnprolognow.org/

4 Mona Rahn

Input Error Messages
hallo message(error, inputError, create naproche input, hallo, Could not parse input.)

message(error, inputError, sentence, 0, No terminal symbol found.)

$x \a y$. message(error, inputError, sentence, $ x \a y$, Could not parse math mode.)

message(error, inputError, input math, \a, Latex command not supported.)

The error messages always have the same form:

– Either error or warning as the first entry; after an error, the program fails
– A specification of the error type, like inputError, prsError or checkError
– The predicate which throws the error message
– The wrong code or the ID of the wrong PRS (or 0 if the whole input is

concerned)
– A description of the error

6 The Module “fo grammar.pl”

The module fo grammar.pl is mainly used in the PRS construction in order to
process the mathematical input. It takes the mathematical output of input math
(see section 4) and converts it into DOBSOD format while extracting the free
variables. For example, the input

[f,(,x,),=,y]

is transformed into

type∼function..name∼f..args∼[
type∼variable..arity∼0..name∼x..args∼[]]

and the free variables are

[type∼variable..arity∼0..name∼x..args∼[]].

To maintain the order of the variables in the DOBSOD list, I wrote the
predicate union in right order which unifies two lists in the right order.

I also programmed the predicate fo chained formula so that chained for-
mulas like can be parsed. For example, the input

[x,<,y,<,z]

is transformed into

type∼logical symbol..name∼&..arity∼2..args∼[
type∼relation..name∼less..args∼[

type∼variable..name∼x..arity∼0..args∼[],
type∼variable..name∼y..arity∼0..args∼[]

],
type∼relation..name∼less..args∼[

Internship Report 5

type∼variable..name∼y..arity∼0..args∼[],
type∼variable..name∼z..arity∼0..args∼[]]

]

which is DOBSOD notation for “x<y and y<z”.
Furthermore, I implemented the error messages in fo grammar.pl. An exam-

ple is the message

message(syntax,fo_term, X,‘Term expected’)

where X is the concatenation of the first five atoms from the place where the
term is expected.

7 The Module “checker.pl”

7.1 Overview

My task in the internship primarily involved collaborating in checker.pl. This
program mainly consists of two predicates: check prs and check conditions.

Fig. 2. Flowchart of checker.pl

The general procedure is the following: At first, check prs gets the finished
PRS as an input. As shown in figure 2, each of the conditions of the PRS is pro-

6 Mona Rahn

cessed by check conditions; if the check-trigger is set to “check”, the predicate
fof check checks it using an external ATP.

The PRS is logically valid if each of its conditions is valid.

7.2 The Input: Proof Representation Structures

The input of check prs is a Proof Representation Structure. A PRS has the
following constituents:

– The Identification number (id)
– A list of mathematical referents (mrefs)
– A list of discourse referents (drefs)
– A list of textual referents (rrefs)
– An ordered list of conditions (conds)
– A list of the discourse and mathematical referents accessible at the beginning

of the PRS (accbefore)
– A list of the discourse and mathematical referents accessible at the end

of the PRS which consists of the list accbefore and the new discourse and
mathematical referents (accafter)

A simple example PRS (the PRS corresponding to the input “x=y”) is:

Fig. 3. An example PRS

A PRS can have the following conditions:

– for any n-ary predicate p predicate(X1, . . . , Xn, p)
– holds(X), representing the claim that the formula referenced by X is true.
– math id(X,Y), which binds a discourse referent X to a mathematical refer-

ent Y (a formula or a term).
– PrsA

Internship Report 7

– neg(PrsA), representing a negation.
– PrsA := PrsB, representing a definition.
– PrsA =⇒ PrsB, representing an assumption A and the set of claims B

made inside the scope of this assumption.
– PrsA ⇒ PrsB, representing an implication A and the set of claims B made

inside the scope of this implication. If PrsA is empty, the condition repre-
sents a universally quantified formula

– PrsA ⇐ PrsB, representing a reversed implication
– contradiction, representing a contradiction.
– PrsA ⇔ PrsB, representing an equivalence
– :: PrsA ⇒ PrsB, representing an function definition
– PrsA ∨ PrsB, representing a disjunction
– >< [PrsA, PrsB, . . .], representing an exclusive disjunction

7.3 The Predicate “check prs”

The predicate check prs has five arguments:

+ PRS:prs is the input PRS
+ PremisesBegin:list(DOBSOD) is the list of premises that already have been

parsed, given in DOBSOD format2, which is a formula or a term stored as
a tree.

+ CheckTrigger:(check / nocheck) gives us the option to either try to prove
every formula we encounter (check) or to just go through the structure of
the PRS parsing every formula without running a prover (nocheck).

- PremisesEnd:list(DOBSOD) is PremisesBegin with the formula image of the
current PRS appended

Depending on the PRS, check prs proceeds differently. We distinguish be-
tween four cases (not counting the error cases):

1. The PRS is a structure PRS, i.e. a theorem or a lemma (indicated by “the-
orem” or “lemma” in the PRS id)

2. The PRS is an induction PRS
3. The PRS is neither a structure PRS nor an induction PRS and has no

variables in its mrefs
4. As case three, only that it has variables in its mrefs

The induction PRS case and case four were implemented by me; in the other
two, I fixed some bugs and improved the code. An example for an induction in
the Naproche Controlled Natural Language is

By induction, for all x $ord(x)$.

The corresponding PRS is shown in figure 4. Note the word “induction” in the
rrefs of the PRS. 4.
2 For more information about this format, see the internship report of

Bhoomija Ranjan, http://www.math.uni-bonn.de/people/logic/publications/

MT-2008-02.pdf

8 Mona Rahn

Fig. 4. An induction PRS

At first, check prs just extracts the formula image of the PRS (using the
predicate check conditions which I will describe later). In our example, this
would be:

type∼quantifier..name∼!..arity∼2..args∼[
[x],
type∼relation..name∼ord..arity∼1..args∼[

type∼variable..name∼x..arity∼0,
]

]

which is DOBSOD notation for “For all x: ord(x)”. Now we check if the formula
image is one universally quantified formula; if this is not the case, the error
message

message[logic,check prs,AtomId,
Wrong formula for induction PRS
(must be universally quantified).]

is thrown and check prs fails. In our case, the input is correct. In order to prove
a statement by induction, one has to prove the base case and the inductive step.
Therefore, we proceed with making the induction formulas using the predicate
make induction formulas, which can be found in premises.pl. In our example,
it produces the following formula for the the base case:

type∼relation..name∼ord..arity∼1..args∼[

Internship Report 9

type∼constant..name∼1..arity∼0,
]

and for the inductive step:

type∼quantifier..name∼!..arity∼2..args∼[
[x],
type∼logical symbol..name∼(=>)..arity∼2..args∼[
type∼relation..name∼ord..arity∼1..args∼[

type∼variable..name∼x..arity∼0,
]

]]

If CheckTrigger is set to “check”, an ATP now tries to derive these formu-
las from PremisesBegin. PremisesEnd is instantiated with the concatenation of
PremisesBegin and the universally quantified formula “for all x: ord(x)”.

7.4 The Predicate “check conditions”

The predicate check conditions has six arguments:

+ Id:atom is the Id of the PRS that is currently checked
+ Accafter:list(DOBSOD) is the list of Math-IDs of the PRS
+ Conditions:list(DOBSOD) is the list of conditions which we try to prove
+ PremisesBegin:list(DOBSOD) is the list of premises from which we try to

prove the PRS
- PremisesEnd:list(DOBSOD) is PremisesBegin with the formulae of Condi-

tions appended
+ CheckTrigger:(check / nocheck) indicates whether the formulae should be

checked by an ATP

check conditions processes the conditions of a PRS sequentially and pro-
ceeds differently depending on the condition type. I implemented the majority
of the different cases in checker.pl and updated the rest. Two examples are an
exclusive disjunction and an assumption.

An exclusive disjunction condition >< [PrsA, PrsB, . . .] is created when
the user writes “Precisely one of the following cases holds: ...”. check conditions
can process up to four disjuncted PRSs. The case when we have two is treated
as follows:

At first, we calculate the formula image of PrsA and PrsB by using check prs
with CheckTrigger = “nocheck”. Then we quantify the premises of PrsA existen-
tially over the variables in the mrefs of PrsA and proceed similarly with PrsB;
let us call the results QPremisesA and QPremisesB (Q stands for quantified).
The formulae corresponding to the exclusive disjunction

10 Mona Rahn

QPremisesA ∨ QPremisesB
QPremisesA ⇒ ¬QPremisesB
QPremisesB ⇒ ¬QPremisesA

are constructed; then an ATP checks then if CheckTrigger is set to “check”.
Then the variable NewPremisesBegin is instantiated with the concatenation of
PremisesBegin and these formulae and

check_conditions(Id, Accafter, Rest,
NewPremisesBegin, PremisesEnd, CheckTrigger)

is called for the rest of the conditions. Note that NewPremisesBegin is the
new PremisesBegin so that the formulae just parsed are treated like premises.
PremisesEnd is just passed to the next call of check conditions; it is instan-
tiated with PremisesBegin when all conditions have been parsed and therefore
the list Conditions is empty.

An assumption condition PrsA =⇒ PrsB is built when the input is
“Fix...”, “Assume that...”, “Let...”, “Suppose...” or “Consider...”.

At first, we get the formula image PremisesA of the antecedent PRS PrsA.
Then we check PrsB with the concatenation of PremisesBegin and PremisesA if
CheckTrigger is set to “check”; otherwise we just get its formula image Premis-
esB as well. Now we distinguish between two cases concerning the update of
PremisesBegin:

The first case is that we deal with a proof by contradiction indicated by

type∼relation..arity∼0..name∼‘$false’

as the last premise of PrsB. In this case, if the antecedent PRS contains premises,
we negate them - since a contradiction could be derived from the assumptions -
and append the negated formulas to PremisesBegin, instantiating NewPremis-
esBegin with the result. If, however, PremisesA is empty, this means that the
contradicting assumptions must have been made on a higher level. This occurs
for example when the user writes “Let x be given.” in a proof by contradiction.
Therefore we instantiate NewPremisesBegin with the concatenation of Premis-
esBegin and the “false”-premise from above.

In the case that we deal with a “normal” assumption (i. e. no contradic-
tion), the procedure is different, but depends on the antecedent PRS as well. If
it contains no premises, we interpret the condition as a “for all...” statement;
therefore, for every formula F in PremisesB, we skolemize the free variables in
F using the predicate skolemize (see section 8) and append

∀V ariablesA : F

Internship Report 11

to PremisesBegin, where VariablesA are the variables in the mrefs of PrsA. If,
however, the mrefs of PrsA are empty as well, something must have gone wrong
and we throw the error message “Assumption PRS: Antecedent PRS A is empty
and contains no variables”. I have programmed the predicate error if empty
that performs this task and is also used by other check condition cases.

In the case that PremisesA is not empty, we skolemize the free variables of
every formula F in PremisesB as we did in the first case and then append

∀V ariablesA : ConjunctPremisesA ⇒ F

to PremisesBegin, where VariablesA are again the variables in the mrefs of A
and ConjunctPremisesA is the conjunction PremisesA.

The recursive call of check conditions is the same as in the exclusive dis-
junction case.

8 The Module “premises.pl”

Most of the auxiliary predicates I wrote for checker.pl can be found in the file
premises.pl.

For example, the predicate quantify existentially conjuncts a list of for-
mulae and quantifies over the variables in a list of mathematical referents (which
are extracted by the predicate variables); quantify existentially is used
among others in the exclusive disjunction case of check conditions. The pred-
icate make induction formulas produces the formulae for the induction case
of check prs as described in section 7.3; similarly, make implication formula,
make equivalence formula etc. are auxiliary predicates for the corresponding
cases in check conditions.

Furthermore, the predicates update skolem variables and skolemize can
be found in premises.pl. I programmed them for the skolemization in the assump-
tion case of check conditions (see section 7.4). The procedure is the following:

In order to create and assign the skolemized variables in the first place, we
use the predicate update skolem variables. Then the predicate skolemize is
used in order to exchange the variables with their skolemized representatives.

skolemize has four arguments:

+ Formula:DOBSOD
+ Variables:list(DOBSOD)
+ SkolemVariables:list(DOBSOD)
- SkolemizedFormula:DOBSOD

and replaces each variable of Variables in the formula Formula by the corre-
sponding skolemized variable which can be found in SkolemizedVariables, using
my predicate replace in formula. An example for a skolemized variable is

type∼function..name∼skolem..arity∼2
..args∼[1,type∼variable..name∼x

..arity∼0..args∼[]]
which means that this variable is the first one that depends on the (bound)
variable x.

12 Mona Rahn

9 The Module “prs export.pl”

The file prs export.pl is responsible for the output of PRSs. At the moment, the
output is given in HTML format but we plan to use XML format as well. There
are two main reasons: firstly, it is more flexible; secondly, XML allows to represent
a PRS in a universally processable format. Therefore I updated the predicate
prs to xml which converts between the DOBSOD- and XML-Representation of
a PRS. The XML representation of the PRS condition “x=y” can be found in
the appendix.

10 Miscellaneous Work

I created the favicon (the little icon which can be seen next to the web address
in the browser) for the Naproche website. At the moment, it appears only on
the local Naproche website but we plan to use it in the online version later.

11 Conclusion

At the beginning, especially the inderdisciplinary nature of the Naproche Project
appealed to me.

My expectations were fulfilled: Not only did I study an interesting application
of logic, but also the time on the Naproche Project gave me the opportunity to
study different subjects apart from mathematics. On the one hand, I learnt
Prolog; on the other hand I, worked with linguistic techniques like PRS.

Furthermore, programming the code was a great experience for me since it
provided me with the opportunity to contribute to current research.

In conclusion, I can say that I found the internship very fruitful and inter-
esting.

12 Appendix

12.1 XML

The PRS condition “x=y” looks like this in XML format:

<name>=</name>
<type>relation</type>
<arity>2</arity>
<args>
<arg>
<name>x</name>
<type>variable</type>
<arity>0</arity>
<args/>

</arg>

Internship Report 13

<arg>
<name>y</name>
<type>variable</type>
<arity>0</arity>
<args/>

</arg>
</args>

12.2 Code

Here are some examples for code I have written.

Skolemize and update skolem variables

skolemize(Formula,[],_SkolemVariables,Formula) :- !.

skolemize(Formula,Variables,SkolemVariables,SkolemizedFormula) :-
Variables = [Variable|Rest],
SkolemId = skolem_id(Variable,SkolemVariable),
member(SkolemId,SkolemVariables),
replace_in_formula(Variable,Formula,SkolemVariable,FormulaTmp),
skolemize(FormulaTmp,Rest,SkolemVariables,SkolemizedFormula).

update_skolem_variables(SkolemVariables, _SkolemArity,
_VariablesA, [], SkolemVariables) :-!.

update_skolem_variables(SkolemVariables, SkolemArity,
VariablesA, AdditionalVariables,
NewSkolemVariables) :-

% case that Variable already appears in SkolemVariables
% we add a new skolem_id
AdditionalVariables = [Variable|Rest],

% add a new skolem_id for Variable
skolem_index(Index),
SkolemFunction = type~function..name~skolem

..arity~SkolemArity..args~[Index|VariablesA],
SkolemId = [skolem_id(Variable,SkolemFunction)],
new_skolem_index(Index),

append(SkolemVariables,SkolemId,SkolemVariablesTmp),
update_skolem_variables(SkolemVariablesTmp,SkolemArity,

VariablesA,Rest,NewSkolemVariables).

14 Mona Rahn

new_skolem_index(Index) :-
retract(skolem_index(Index)),
Index = name~Name,
atom_number(Name,NameN),
succ(NameN, NewNameN),
atom_number(NewName,NewNameN),
assertz(skolem_index(type~constant..arity~0..name~NewName)).

The induction case in check prs

check_prs(PRS,PremisesBegin,PremisesEnd,CheckTrigger) :-
% Case that PRS is an induction PRS
PRS = id~Id..conds~Conds..accafter~Accafter..mrefs~Mrefs..rrefs~Rrefs,
member(‘induction’,Rrefs),

% Mrefs must not contain any variables
variables(Mrefs,[]),

% get the premises of the PRS and throw error message if they are empty
check_conditions(Id,Accafter,Conds,[],PremisesPRS,nocheck),
error_if_empty(PremisesPRS,Id,‘Induction PRS is empty’),

% PremisesPRS has to be one universally quantified formula
PremisesPRS = [UnivQuantifiedFormula],
(
(UnivQuantifiedFormula = name~‘!’,!)
;
(
term_to_atom(Id,AtomId),
add_error_message(logic,‘check_prs’,AtomId,

‘Wrong formula for induction PRS
(must be universally quantified).’),

!,
fail
)),

% Make Induction Formulas
make_induction_formulas(PremisesPRS,Formula1,FormulaSucc),

atom_concat(Id,‘induc_start’,IdStart),
atom_concat(Id,‘induc_step’,IdEnd),

% Check Formulas if CheckTrigger = check
check_formula_if_trigger(PremisesBegin,Formula1,IdStart,CheckTrigger),
check_formula_if_trigger(PremisesBegin,FormulaSucc,IdEnd,CheckTrigger),

Internship Report 15

% update PremisesBegin
append(PremisesBegin,PremisesPRS,PremisesEnd),
!.

The assumption case in check conditions

% Case that A is empty
check_conditions(Id,Accafter,[X |Rest],

PremisesBegin,PremisesEnd,CheckTrigger) :-
X = (A==>B),

% Get PremisesA
check_prs(A,[],PremisesA,nocheck),
PremisesA = [],
!,

% Check B just with PremisesBegin (because A is empty)
% If CheckTrigger = nocheck then don’t check B, else do check it

check_prs(B,PremisesBegin,PremisesBeginAndB,CheckTrigger),
!,

A = mrefs~MrefsA..id~IdA,

% Two cases:
% 1 : The user made a prove by contradiction
% 2 : We deal with a normal assumption
% % The last entry in PremisesB determines that
(append(_,[type~relation..arity~0..name~’$false’],

PremisesBeginAndB) ->
(
% Contradiction case
% Add ’false’ to PremisesBegin
append(PremisesBegin,

[type~relation..arity~0..name~’$false’],
NewPremisesBegin)

)
;
(
% For all Formulas X in PremisesB add
% ! [Variables in MrefsA] : X
% to our Premises storage
variables(MrefsA,VariablesA),
error_if_empty(VariablesA,IdA,

‘Assumption PRS:

16 Mona Rahn

Antecedent PRS A is empty and contains no variables’),
append(PremisesBegin,PremisesB,PremisesBeginAndB),
update_assumption(PremisesBegin,

NewPremisesBegin,MrefsA,PremisesA,PremisesB)
)

),

!,
check_conditions(Id,Accafter,Rest,

NewPremisesBegin,PremisesEnd,CheckTrigger).

% Case that A is not empty
check_conditions(Id,Accafter,[X |Rest],

PremisesBegin,PremisesEnd,CheckTrigger) :-
X = (A==>B),
!,

% Check A.
% We use nocheck as these are Assumptions and need not be checked.
check_prs(A,[],PremisesA,nocheck),
!,

% Check B with all the Premises from A included
% If CheckTrigger = nocheck then don’t check B, else do check it
append(PremisesBegin,PremisesA,PremisesBeginAndA),
check_prs(B,PremisesBeginAndA,PremisesBeginAndAAndB,CheckTrigger),
!,

A = mrefs~MrefsA,

% Two cases:
% 1 : The user made a prove by contradiction
% 2 : We deal with a normal assumption
% % The last entry in PremisesB determines that
(append(_,[type~relation..arity~0..name~’$false’],

PremisesBeginAndAAndB) ->
(
% Contradiction case
%
% Negate Assumption, quantify universally
% over variables in MrefsA and append
% the formula to PremisesBegin
negate_formulas(PremisesA,NegatedA),
quantify_universally(MrefsA,NegatedA,QNegatedA),
append(PremisesBegin,QNegatedA,NewPremisesBegin)

Internship Report 17

)
;
(
% For all Formulas X in PremisesB add
% a new over all free variables in A
% quantified Statement of the form
% ! [Variables in MrefsA] : Fol_A -> X
% to our Premises storage
append(PremisesBeginAndA,PremisesB,PremisesBeginAndAAndB),
update_assumption(PremisesBegin,

NewPremisesBegin,MrefsA,PremisesA,PremisesB)
)

),

!,
check_conditions(Id,Accafter,

Rest,NewPremisesBegin,PremisesEnd,CheckTrigger).

References

1. Patrick Blackburn and Johan Bos. Representation and Inference for Natural Lan-
guage. 1999.

